스킬
ClickHouse

ClickHouse

다운로드 후 ~/.claude/skills/ 폴더에 복사하여 사용하세요

고성능 분석과 데이터 엔지니어링을 위한 ClickHouse 전용 패턴입니다.

개요

ClickHouse는 온라인 분석 처리(OLAP)를 위한 컬럼 지향 데이터베이스 관리 시스템(DBMS)입니다.

주요 기능:

  • 컬럼 지향 저장소
  • 데이터 압축
  • 병렬 쿼리 실행
  • 분산 쿼리
  • 실시간 분석

테이블 설계 패턴

MergeTree 엔진 (가장 일반적)

CREATE TABLE markets_analytics (
    date Date,
    market_id String,
    market_name String,
    volume UInt64,
    trades UInt32,
    unique_traders UInt32,
    avg_trade_size Float64,
    created_at DateTime
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, market_id)
SETTINGS index_granularity = 8192;

ReplacingMergeTree (중복 제거)

-- 중복이 있을 수 있는 데이터용
CREATE TABLE user_events (
    event_id String,
    user_id String,
    event_type String,
    timestamp DateTime,
    properties String
) ENGINE = ReplacingMergeTree()
PARTITION BY toYYYYMM(timestamp)
ORDER BY (user_id, event_id, timestamp)
PRIMARY KEY (user_id, event_id);

AggregatingMergeTree (사전 집계)

-- 집계된 메트릭 유지용
CREATE TABLE market_stats_hourly (
    hour DateTime,
    market_id String,
    total_volume AggregateFunction(sum, UInt64),
    total_trades AggregateFunction(count, UInt32),
    unique_users AggregateFunction(uniq, String)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, market_id);
 
-- 집계된 데이터 쿼리
SELECT
    hour,
    market_id,
    sumMerge(total_volume) AS volume,
    countMerge(total_trades) AS trades,
    uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= toStartOfHour(now() - INTERVAL 24 HOUR)
GROUP BY hour, market_id
ORDER BY hour DESC;

쿼리 최적화 패턴

효율적인 필터링

-- 좋음: 인덱스된 컬럼 먼저 사용
SELECT *
FROM markets_analytics
WHERE date >= '2025-01-01'
  AND market_id = 'market-123'
  AND volume > 1000
ORDER BY date DESC
LIMIT 100;
 
-- 나쁨: 인덱스되지 않은 컬럼 먼저 필터
SELECT *
FROM markets_analytics
WHERE volume > 1000
  AND market_name LIKE '%election%'
  AND date >= '2025-01-01';

집계

-- ClickHouse 전용 집계 함수 사용
SELECT
    toStartOfDay(created_at) AS day,
    market_id,
    sum(volume) AS total_volume,
    count() AS total_trades,
    uniq(trader_id) AS unique_traders,
    avg(trade_size) AS avg_size
FROM trades
WHERE created_at >= today() - INTERVAL 7 DAY
GROUP BY day, market_id
ORDER BY day DESC, total_volume DESC;
 
-- 백분위수에 quantile 사용
SELECT
    quantile(0.50)(trade_size) AS median,
    quantile(0.95)(trade_size) AS p95,
    quantile(0.99)(trade_size) AS p99
FROM trades
WHERE created_at >= now() - INTERVAL 1 HOUR;

윈도우 함수

-- 누적 합계 계산
SELECT
    date,
    market_id,
    volume,
    sum(volume) OVER (
        PARTITION BY market_id
        ORDER BY date
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
    ) AS cumulative_volume
FROM markets_analytics
WHERE date >= today() - INTERVAL 30 DAY
ORDER BY market_id, date;

데이터 삽입 패턴

벌크 삽입 (권장)

import { ClickHouse } from 'clickhouse'
 
const clickhouse = new ClickHouse({
  url: process.env.CLICKHOUSE_URL,
  port: 8123,
  basicAuth: {
    username: process.env.CLICKHOUSE_USER,
    password: process.env.CLICKHOUSE_PASSWORD
  }
})
 
// 배치 삽입 (효율적)
async function bulkInsertTrades(trades: Trade[]) {
  const values = trades.map(trade => `(
    '${trade.id}',
    '${trade.market_id}',
    '${trade.user_id}',
    ${trade.amount},
    '${trade.timestamp.toISOString()}'
  )`).join(',')
 
  await clickhouse.query(`
    INSERT INTO trades (id, market_id, user_id, amount, timestamp)
    VALUES ${values}
  `).toPromise()
}
⚠️

개별 삽입을 루프에서 사용하지 마세요! 항상 배치 삽입을 사용하세요.

구체화된 뷰

실시간 집계

-- 시간별 통계를 위한 구체화된 뷰 생성
CREATE MATERIALIZED VIEW market_stats_hourly_mv
TO market_stats_hourly
AS SELECT
    toStartOfHour(timestamp) AS hour,
    market_id,
    sumState(amount) AS total_volume,
    countState() AS total_trades,
    uniqState(user_id) AS unique_users
FROM trades
GROUP BY hour, market_id;
 
-- 구체화된 뷰 쿼리
SELECT
    hour,
    market_id,
    sumMerge(total_volume) AS volume,
    countMerge(total_trades) AS trades,
    uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= now() - INTERVAL 24 HOUR
GROUP BY hour, market_id;

성능 모니터링

느린 쿼리 확인

SELECT
    query_id,
    user,
    query,
    query_duration_ms,
    read_rows,
    read_bytes,
    memory_usage
FROM system.query_log
WHERE type = 'QueryFinish'
  AND query_duration_ms > 1000
  AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY query_duration_ms DESC
LIMIT 10;

테이블 크기 확인

SELECT
    database,
    table,
    formatReadableSize(sum(bytes)) AS size,
    sum(rows) AS rows,
    max(modification_time) AS latest_modification
FROM system.parts
WHERE active
GROUP BY database, table
ORDER BY sum(bytes) DESC;

일반적인 분석 쿼리

일일 활성 사용자

SELECT
    toDate(timestamp) AS date,
    uniq(user_id) AS daily_active_users
FROM events
WHERE timestamp >= today() - INTERVAL 30 DAY
GROUP BY date
ORDER BY date;

리텐션 분석

SELECT
    signup_date,
    countIf(days_since_signup = 0) AS day_0,
    countIf(days_since_signup = 1) AS day_1,
    countIf(days_since_signup = 7) AS day_7,
    countIf(days_since_signup = 30) AS day_30
FROM (
    SELECT
        user_id,
        min(toDate(timestamp)) AS signup_date,
        toDate(timestamp) AS activity_date,
        dateDiff('day', signup_date, activity_date) AS days_since_signup
    FROM events
    GROUP BY user_id, activity_date
)
GROUP BY signup_date
ORDER BY signup_date DESC;

퍼널 분석

SELECT
    countIf(step = 'viewed_market') AS viewed,
    countIf(step = 'clicked_trade') AS clicked,
    countIf(step = 'completed_trade') AS completed,
    round(clicked / viewed * 100, 2) AS view_to_click_rate,
    round(completed / clicked * 100, 2) AS click_to_completion_rate
FROM (
    SELECT
        user_id,
        session_id,
        event_type AS step
    FROM events
    WHERE event_date = today()
)
GROUP BY session_id;

모범 사례

1. 파티셔닝 전략

  • 시간별 파티션 (보통 월 또는 일)
  • 너무 많은 파티션 피하기
  • 파티션 키에 DATE 타입 사용

2. 정렬 키

  • 가장 자주 필터링되는 컬럼을 먼저
  • 카디널리티 고려 (높은 카디널리티 먼저)
  • 순서가 압축에 영향

3. 데이터 타입

  • 가장 작은 적절한 타입 사용 (UInt32 vs UInt64)
  • 반복되는 문자열에 LowCardinality 사용
  • 범주형 데이터에 Enum 사용

4. 피해야 할 것

피해야 할 것대안
SELECT *필요한 컬럼만 선택
FINAL쿼리 전 데이터 병합
너무 많은 JOIN분석을 위해 비정규화
작은 빈번한 삽입배치 삽입

ClickHouse는 분석 워크로드에 탁월합니다. 쿼리 패턴에 맞게 테이블을 설계하고, 삽입을 배치로 하며, 실시간 집계를 위해 구체화된 뷰를 활용하세요.