ClickHouse
다운로드 후
~/.claude/skills/ 폴더에 복사하여 사용하세요고성능 분석과 데이터 엔지니어링을 위한 ClickHouse 전용 패턴입니다.
개요
ClickHouse는 온라인 분석 처리(OLAP)를 위한 컬럼 지향 데이터베이스 관리 시스템(DBMS)입니다.
주요 기능:
- 컬럼 지향 저장소
- 데이터 압축
- 병렬 쿼리 실행
- 분산 쿼리
- 실시간 분석
테이블 설계 패턴
MergeTree 엔진 (가장 일반적)
CREATE TABLE markets_analytics (
date Date,
market_id String,
market_name String,
volume UInt64,
trades UInt32,
unique_traders UInt32,
avg_trade_size Float64,
created_at DateTime
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, market_id)
SETTINGS index_granularity = 8192;ReplacingMergeTree (중복 제거)
-- 중복이 있을 수 있는 데이터용
CREATE TABLE user_events (
event_id String,
user_id String,
event_type String,
timestamp DateTime,
properties String
) ENGINE = ReplacingMergeTree()
PARTITION BY toYYYYMM(timestamp)
ORDER BY (user_id, event_id, timestamp)
PRIMARY KEY (user_id, event_id);AggregatingMergeTree (사전 집계)
-- 집계된 메트릭 유지용
CREATE TABLE market_stats_hourly (
hour DateTime,
market_id String,
total_volume AggregateFunction(sum, UInt64),
total_trades AggregateFunction(count, UInt32),
unique_users AggregateFunction(uniq, String)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, market_id);
-- 집계된 데이터 쿼리
SELECT
hour,
market_id,
sumMerge(total_volume) AS volume,
countMerge(total_trades) AS trades,
uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= toStartOfHour(now() - INTERVAL 24 HOUR)
GROUP BY hour, market_id
ORDER BY hour DESC;쿼리 최적화 패턴
효율적인 필터링
-- 좋음: 인덱스된 컬럼 먼저 사용
SELECT *
FROM markets_analytics
WHERE date >= '2025-01-01'
AND market_id = 'market-123'
AND volume > 1000
ORDER BY date DESC
LIMIT 100;
-- 나쁨: 인덱스되지 않은 컬럼 먼저 필터
SELECT *
FROM markets_analytics
WHERE volume > 1000
AND market_name LIKE '%election%'
AND date >= '2025-01-01';집계
-- ClickHouse 전용 집계 함수 사용
SELECT
toStartOfDay(created_at) AS day,
market_id,
sum(volume) AS total_volume,
count() AS total_trades,
uniq(trader_id) AS unique_traders,
avg(trade_size) AS avg_size
FROM trades
WHERE created_at >= today() - INTERVAL 7 DAY
GROUP BY day, market_id
ORDER BY day DESC, total_volume DESC;
-- 백분위수에 quantile 사용
SELECT
quantile(0.50)(trade_size) AS median,
quantile(0.95)(trade_size) AS p95,
quantile(0.99)(trade_size) AS p99
FROM trades
WHERE created_at >= now() - INTERVAL 1 HOUR;윈도우 함수
-- 누적 합계 계산
SELECT
date,
market_id,
volume,
sum(volume) OVER (
PARTITION BY market_id
ORDER BY date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS cumulative_volume
FROM markets_analytics
WHERE date >= today() - INTERVAL 30 DAY
ORDER BY market_id, date;데이터 삽입 패턴
벌크 삽입 (권장)
import { ClickHouse } from 'clickhouse'
const clickhouse = new ClickHouse({
url: process.env.CLICKHOUSE_URL,
port: 8123,
basicAuth: {
username: process.env.CLICKHOUSE_USER,
password: process.env.CLICKHOUSE_PASSWORD
}
})
// 배치 삽입 (효율적)
async function bulkInsertTrades(trades: Trade[]) {
const values = trades.map(trade => `(
'${trade.id}',
'${trade.market_id}',
'${trade.user_id}',
${trade.amount},
'${trade.timestamp.toISOString()}'
)`).join(',')
await clickhouse.query(`
INSERT INTO trades (id, market_id, user_id, amount, timestamp)
VALUES ${values}
`).toPromise()
}⚠️
개별 삽입을 루프에서 사용하지 마세요! 항상 배치 삽입을 사용하세요.
구체화된 뷰
실시간 집계
-- 시간별 통계를 위한 구체화된 뷰 생성
CREATE MATERIALIZED VIEW market_stats_hourly_mv
TO market_stats_hourly
AS SELECT
toStartOfHour(timestamp) AS hour,
market_id,
sumState(amount) AS total_volume,
countState() AS total_trades,
uniqState(user_id) AS unique_users
FROM trades
GROUP BY hour, market_id;
-- 구체화된 뷰 쿼리
SELECT
hour,
market_id,
sumMerge(total_volume) AS volume,
countMerge(total_trades) AS trades,
uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= now() - INTERVAL 24 HOUR
GROUP BY hour, market_id;성능 모니터링
느린 쿼리 확인
SELECT
query_id,
user,
query,
query_duration_ms,
read_rows,
read_bytes,
memory_usage
FROM system.query_log
WHERE type = 'QueryFinish'
AND query_duration_ms > 1000
AND event_time >= now() - INTERVAL 1 HOUR
ORDER BY query_duration_ms DESC
LIMIT 10;테이블 크기 확인
SELECT
database,
table,
formatReadableSize(sum(bytes)) AS size,
sum(rows) AS rows,
max(modification_time) AS latest_modification
FROM system.parts
WHERE active
GROUP BY database, table
ORDER BY sum(bytes) DESC;일반적인 분석 쿼리
일일 활성 사용자
SELECT
toDate(timestamp) AS date,
uniq(user_id) AS daily_active_users
FROM events
WHERE timestamp >= today() - INTERVAL 30 DAY
GROUP BY date
ORDER BY date;리텐션 분석
SELECT
signup_date,
countIf(days_since_signup = 0) AS day_0,
countIf(days_since_signup = 1) AS day_1,
countIf(days_since_signup = 7) AS day_7,
countIf(days_since_signup = 30) AS day_30
FROM (
SELECT
user_id,
min(toDate(timestamp)) AS signup_date,
toDate(timestamp) AS activity_date,
dateDiff('day', signup_date, activity_date) AS days_since_signup
FROM events
GROUP BY user_id, activity_date
)
GROUP BY signup_date
ORDER BY signup_date DESC;퍼널 분석
SELECT
countIf(step = 'viewed_market') AS viewed,
countIf(step = 'clicked_trade') AS clicked,
countIf(step = 'completed_trade') AS completed,
round(clicked / viewed * 100, 2) AS view_to_click_rate,
round(completed / clicked * 100, 2) AS click_to_completion_rate
FROM (
SELECT
user_id,
session_id,
event_type AS step
FROM events
WHERE event_date = today()
)
GROUP BY session_id;모범 사례
1. 파티셔닝 전략
- 시간별 파티션 (보통 월 또는 일)
- 너무 많은 파티션 피하기
- 파티션 키에 DATE 타입 사용
2. 정렬 키
- 가장 자주 필터링되는 컬럼을 먼저
- 카디널리티 고려 (높은 카디널리티 먼저)
- 순서가 압축에 영향
3. 데이터 타입
- 가장 작은 적절한 타입 사용 (UInt32 vs UInt64)
- 반복되는 문자열에 LowCardinality 사용
- 범주형 데이터에 Enum 사용
4. 피해야 할 것
| 피해야 할 것 | 대안 |
|---|---|
| SELECT * | 필요한 컬럼만 선택 |
| FINAL | 쿼리 전 데이터 병합 |
| 너무 많은 JOIN | 분석을 위해 비정규화 |
| 작은 빈번한 삽입 | 배치 삽입 |
ClickHouse는 분석 워크로드에 탁월합니다. 쿼리 패턴에 맞게 테이블을 설계하고, 삽입을 배치로 하며, 실시간 집계를 위해 구체화된 뷰를 활용하세요.